Search results for "Organic semiconductors"
showing 10 items of 12 documents
Bulk heterojunctions by boramers for plastic photovoltaics
2009
Intrinsic Organic Semiconductors as Hole Transport Layers in p–i–n Perovskite Solar Cells
2021
Thin polymeric and small-molecular-weight organic semiconductors are widely employed as hole transport layers (HTLs) in perovskite solar cells. To ensure ohmic contact with the electrodes, the use of doping or additional high work function (WF) interlayer is common. In some cases, however, intrinsic organic semiconductors can be used without any additive or buffer layers, although their thickness must be tuned to ensure selective and ohmic hole transport. Herein, the characteristics of thin HTLs in vacuum-deposited perovskite solar cells are studied, and it is found that only very thin (<5 nm) HTLs readily result inhigh-performing devices, as the HTL acts as a WF enhancer while still ens…
Blue Emitting Organic Light Emitting Diodes
2019
Organic light emitting diodes (OLEDs) [1] can be fabricated on a range of materials such as glass, silicon or flexible plastic substrates. This can be exploited for the realization of integrated OLED-based fluorescence chemical sensors [2] and microfluidic systems [3] for application in areas such as biotechnology, life sciences, pharmaceuticals, public health and defense. These devices hold promises to be cost effective, ultra-compact (including the possibility to be fabricated into large bidimensional arrays), and capable to handle smaller sample volumes in order to achieve high throughput. Blue light is advantageous because it is strongly absorbed by most sensing molecules attached to bi…
Theoretical Study of the Charge Transfer Exciton Binding Energy in Semiconductor Materials for Polymer:Fullerene-Based Bulk Heterojunction Solar Cells
2019
Recent efforts and progress in polymer solar cell research have boosted the photovoltaic efficiency of the technology. This efficiency depends not only on the device architecture but also on the material properties. Thus, insight into the design of novel semiconductor materials is vital for the advancement of the field. This paper looks from a theoretical viewpoint into two of the factors for the design of semiconductor materials with applications to bulk heterojunction solar cells: the charge transfer exciton binding energy and the nanoscale arrangement of donor and acceptor molecules in blend systems. Being aware that the exciton dissociation of local excitons in charge transfer states in…
Solution processed pentacene thin films: new routes for building-up plastic field effect transistors
2008
Semiconductor @ sensitizer composites for enhanced photoinduced processes
2021
This Chapter provides an overview of common procedures used for the preparation, characterization, and exploration of photocatalytic properties of composite materials based on inorganic semiconductors in combination with sensitizers, such as porphyrins, phthalocyanines, and related macrocyclic compounds as promoters of photoinduced processes. In this context the advantage of hybrid photocatalysts, obtained by impregnation of photosensitizers onto the surface of different semiconductors, designed for improving a choice of diverse reactions has been demonstrated, highlighting innovative aspects that contribute to better sustainability of the photocatalytic processes. Mechanistic details conce…
LED organici con emissione nel blu
2007
We report the development of blue organic light emitting diodes (OLEDs) based on molecular materials. Electrical characteristics and quantum efficiency of single layer devices and triple layer devices comprising further a hole blocking layer and an electron injection layer are compared and prospects for applications to passive matrix displays and fluorescence integrated biosensors are also discussed.
PEDOT thin films with n-type thermopower
2019
peer-reviewed Synthesis of n-type organic semiconductors is challenging as reduced states are difficult to obtain due to their instability in air. Here, we report tailoring of semiconducting behavior through control of surfactant concentration during synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles. Nanoparticles were synthesized by mini-emulsion polymerization, where stable suspensions were used to produce polymer films by a simple casting technique on polyethylene terephthalate (PET) substrates. Electrical conductivity and Seebeck coefficients were measured as a function of surfactant concentration. It was found that conductivity decreases three orders of magnitude as s…
Excited states engineering enables efficient near-infrared lasing in nanographenes
2021
The spectral overlap between stimulated emission (SE) and absorption from dark states (i.e. charges and triplets) especially in the near-infrared (NIR), represents one of the most effective gain loss channel in organic semiconductors. Recently, bottom-up synthesis of atomically precise graphene nanostructures, or nanographenes (NGs), has opened a new route for the development of environmentally and chemically stable materials with optical gain properties. However, also in this case, the interplay between gain and absorption losses has hindered the attainment of efficient lasing action in the NIR. Here, we demonstrate that the introduction of two fluoranthene imide groups to the NG core lead…
Electrochemical polymerization of ambipolar carbonyl-functionalized indenofluorene with memristive properties
2019
Abstract Carbonyl-functionalized indenofluorene was electropolymerized with a high faradaic efficiency of 85% and the solid state properties of the resulting polymeric thin films were investigated. They displayed modular optical properties depending on their oxidation state. The approach used for inorganic semiconductors was applied to polyindeonofluorene derivative. Mott-Schottky analysis evidenced a switching from p-type to n-type electrical conduction, suggesting an ambipolar behaviour of the polymer. As an application, flexible organic memristors were fabricated and resistive switching properties were observed.